Predicting floods with Flickr tags

نویسندگان

  • Nataliya Tkachenko
  • Stephen Jarvis
  • Rob Procter
چکیده

Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags '#Sandy' or '#flooding'), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Flickr for Characterizing the Environment: An Exploratory Analysis

The photo-sharing website Flickr has become a valuable informal information source in disciplines such as geography and ecology. Some ecologists, for instance, have been manually analysing Flickr to obtain information that is more up-to-date than what is found in traditional sources. While several previous works have shown the potential of Flickr tags for characterizing places, it remains uncle...

متن کامل

Exploiting User-supplied Tags for Flickr Photos Annotation

The popularity of photo-sharing websites like Flickr give us a chance to observe what ordinary users do in their daily life. Particularly, Flickr allows the users to provide personalized tags when uploading photos, and then we can annotate Flickr photos using user-supplied tags. This paper proposes an approach to automatically annotate Flickr photos by exploiting user-supplied tags. Usersupplie...

متن کامل

Construction and evaluation of ontological tag trees

Several expert systems have been proposed to address the sparsity of tags associated with online content such as images and videos. However most of such systems either necessitate extracting domain-specific features, or are solely based on tag semantics, or have significant space requirements to store corpus based tag statistics. To address these shortcomings, in this work we show how ontologic...

متن کامل

Exploiting Flickr Tags and Groups for Finding Landmark Photos

Many people take pictures of different city landmarks and post them to photo-sharing systems like Flickr. They also add tags and place photos in Flickr groups, created around particular themes. Using tags, other people can search for representative landmark images of places of interest. Searching for landmarks using tags results into many non-landmark photos and provides poor landmark summary f...

متن کامل

Analyzing Tag Semantics Across Collaborative Tagging Systems

The objective of our group was to exploit state-of-the-art Information Retrieval methods for finding associations and dependencies between tags, capturing and representing differences in tagging behavior and vocabulary of various folksonomies, with the overall aim to better understand the semantics of tags and the tagging process. Therefore we analyze the semantic content of tags in the Flickr ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017